Feeds:
Articoli
Commenti

Posts Tagged ‘Bachmann’

Pubblicato il 21 marzo 2015, ultima modifica 14 maggio 2017

Proseguiamo la rassegna storica delle locomotive carenate statunitensi. E’ la volta di occuparci di due importanti compagnie che hanno dato un rilevante contributo alla vicenda delle carenate: Southern Pacific e Norfolk & Western. In termini di numero di carenate possedute, si tratta rispettivamente della seconda e terza forza, alle spalle della PRR di cui ci siamo occupati recentemente.

Southern Pacific

“Espee” corre sul perimetro sudoccidentale degli States, andando dall’Oregon alla Lousiana, con una rete di 15.000 miglia.

Rete della Southern Pacific - da www.pbs.org

Rete della Southern Pacific – da http://www.pbs.org

Il giorni di inizio primavera 1937, la Southern Pacific introdusse il Daylight che collegava Los Angeles a San Francisco in poco meno di 10 ore. Il convoglio, verniciato in rosso, arancio e nero, era trainato da una Golden State GS-2 (4-8-4) parzialmente carenata. La colorazione poco a poco si estese a tutta la rete passeggeri di SP e permase nella successiva epoca Diesel.

Il Daylight lungo la costa del Pacifico, da transpressnz.blogspot.it

Il Daylight lungo la costa del Pacifico, da transpressnz.blogspot.it

GS4 in corsa - foto Viewliner da s147.photobucket.com/

GS4 in corsa – foto Viewliner da s147.photobucket.com/

Fu un grande successo che aprì la strada ad altri convogli simili: San Joaquin Daylight, Shasta DaylightSacramento Daylight, e Sunbeam. Per quest’ultimo, che collegava Dallas con Houston, vennero ammodernate tre Pacific P6 del 1913, carenandole e creando la classe P14 (n.2455-2457). Il Sunbeam percorreva le 264 miglie in 4:45 ore. Dal ’38 divenne un convoglio non-stop, impiegando 265 minuti, con una media di 60 miglia/ora (100 Km/h): mile-a-minute era un imperativo, visto che i concorrenti Texas Rocket Sam Houston Zephyr si attestavano su queste prestazioni.

Una Pacific P14 per il Sunbeam

Una Pacific P14 per il Sunbeam

Una P-14 in testa al Sunbeam - da texashistory.unt.edu/

Una P-14 in testa al Sunbeam – da texashistory.unt.edu/

Qualche anno dopo le tre Pacific furono cedute alla Texas & New Orleans, dove furono rinumerate 650-652.

T&NO 650 (Photo courtesy Norman Kechtkoff, da www.steamlocomotive.com/

T&NO 650 (Photo courtesy Norman Kechtkoff, da http://www.steamlocomotive.com/

Le regine furono comunque le GS. Le GS-2 erano l’evoluzione carenata delle Northern GS-1 (4-8-4). Nel ’36 ne furono costruite 6 (n. 7646–7651): furono quelle che servirono per il Daylight.

Disegno della AP 4-8-4 GS4 Daylight CT117 - da customtrains.org

Disegno della AP 4-8-4 GS4 Daylight CT117 – da customtrains.org

L’anno successivo vennero realizzate 14 GS-3 (7721–7734) che presentavano piccole differenze rispetto alle GS-2, e rispetto a queste erano leggermente più lunghe ed avevavo ruote più grandi (203 cm contro 187 cm). L’evoluzione continuò con le GS-4, realizzate in due serie tra il ’41 e il ’42, per un totale di 28 macchine (7798–7817 e 7848–7855).

Southern Pacific GS-4 4449 da free-images.gatag.net

Southern Pacific GS-4 4449 da free-images.gatag.net

 Sp GS-4 4449 da locomotive.wikia.com

Sp GS-4 4449 da locomotive.wikia.com

Le ultime due macchine furono delle GS-5 (7856, 7857), realizzate nel 1942, che dalla GS-4 differivano per l’uso di cuscinetti a sfera. Per dettagli si veda steamlocomotive.com.

Il totale fu di ben 50 GS, più le 3 Pacific: il più consistente lotto di carenate negli interi States dopo quello della Pennsy-.

Nl 1943 vennero prodotte ancora le GS-6, ma queste dall’estetica delle precedenti mantennero solo il frontale e la parte superiore della caldaia, e non possono certo essere annoverate tra le carenate (anche se qualcuno le chiama semicarenate). La SP le avrebbe volute carenate, ma l’austerity legata alla guerra rese impossibile realizzare una cosa così “voluttuaria”. Le GS-6 invece furono dichiarate per servizio misto merci-passeggeri, e la sigla GS cambiò significato: da Golden State divenne General Service. Con questi trucchetti fu possibile far approvare l’ordine…

Per inciso, negli anni di guerra, per diminuire le necessità manutentive, alcune carenate persero la livrea colorata e divennero nere. Riacquistarono i colori vivaci al termine del conflitto.

Le GS restarono in servizio fino a metà anni ’50: ad esempio il Coast Daylight continuò ad avere trazione a vapore fino al 7 gennaio 1955. Le ultime Golden State lasciarono il servizio nel 1958, ma quella non fu la fine per la fortunata serie. Due locomotive infatti sopravvissero: la 4449 (una GS-4), alloggiata alla Southern Pacific Brooklyn Roundhouse di Portland, Oregon, e la 4460 (una GS-6) al Museum of Transportation di St. Louis, Missouri. La 4449 é conservata in condizioni operative, ed é ancora (anche se raramente) usata per treni speciali. In compenso quando li fanno non sono certo piccole escursioni, ma lunghi viaggi!

La SP 4449 in testa al Daylight

La SP 4449 in testa al Daylight, da spdaylight.net

La 4449 venne anche usata nel ’75 per il treno celebrativo American Freedom Train, che trainò per gran parte degli USA (dividendo il compito con altre due vaporiere, queste non carenate: la Reading 4-8-4 #2101 e la Texas & Pacific 2-10-4 #610).

La 4449 al traino del Freedom Train. © Jim Bortolotta da railpictures.net

La 4449 al traino del Freedom Train. © Jim Bortolotta da railpictures.net

Fu usata anche per lo Amtrak Transcontinental Steam Excursionun lungo viaggio che anel 2010 la portò a Seattle (WA) per poi dirigersi ad est fino al Montana prima di tornare alla sua “home town” di Portland, OR. Il viaggio avvenne sotto le insegne della BNSF, con livrea interamente nera. Tornò ai colori “Espee” che aveva temporaneamente lasciato una volta rientrata a Portland. Un’associazione (la Friends of 4449) si occupa delle manutenzione e dell’organizzazione di eventuali altri treni speciali.

SP GS-4 - Foto © Electric Crayon da flickr

SP GS-4 – Foto © Electric Crayon da flickr

Anche per il fatto che la vita di almeno una GS carenata si é protratta fino ai giorni nostri, é estremamente facile trovare belle foto di questo tipo di macchina, ed anche dei filmati, come il seguente.


Norfolk & Western

N&W possedeva una rete ferroviaria che connetteva Norfolk, sulla costa Atlantica, con le campagne della Virginia e le miniere della West Virginia, per raggiungere poi Cincinnati e Columbus in Ohio. Si occupava soprattutto di trasporto merci, ma fu una delle compagnie col maggior numero di locomotive carenate: 14 J, 22 K2 e 2 M2, per un totale di ben 38, Terza forza negli States quanto a numero di carenate.

Mappa della rete di N&W - da www.permaculturemarin.org

Mappa della rete di N&W – da http://www.permaculturemarin.org

Tra il 1941 e il 1942 la Norfolk & Western mese all’opera le cinque Class J (4-8-4) costruite nelle proprie officine di Roanoke in Virginia che nascevano già carenate. Nonostante il diametro ridotto delle sue ruote che erano anche vicinissime tra loro per essere meno aggressive sui binari nel tortuosi tracciati montani della compagnia, questa motrice era la più veloce nella sua classe: 110 mph  (176 Km/h) con 10 carrozze, misurati sulla tratta usata per questi test da PRR, nei pressi di Fort Wayne.

DEttaglio delle ruote della Class J 611 - foto Thumpr455 da Dieselpunk.rg- originale da flickr

Dettaglio delle ruote della Class J 611 – foto Thumpr455 da Dieselpunk.rg- originale da flickr

La N&W 611 nell 1987 - Foto © Ivan Safyan Abrams da flickr

La N&W 611 nell 1987 – Foto © Ivan Safyan Abrams da flickr

Le successive sei, prodotte nel 1943, entrarono in servizio senza carena costituendo la classe J1, ma al termine della guerra furono carenate e tornarono ad essere Class J. Le ultime tre, consegnate nel 1950, nacquero carenate. I numeri di esercizio andavano da 600 a 613. Dunque fu un gruppo assai popoloso: ben 14 locomotive con carena. Furono usate per i treni The Powhatan Arrow, The PocahontasThe Cavalier,  Tennessean, Birmingham Special e The Pelican

N&W Powhatan Arrow - Foto © Jodie Jones, Bob McGilvray Jr. da flickr

N&W Powhatan Arrow – Foto © Jodie Jones, Bob McGilvray Jr. da flickr

N&W Powhatan Arrow - Foto © Mike Robbins da flickr

N&W Powhatan Arrow – Foto © Mike Robbins da flickr

La N&W 692 sulla piattforma girevole - da spec.lib.vt.edu

La N&W 692 sulla piattforma girevole – da spec.lib.vt.edu

Restarono in esercizio fino al 1958. Una é visibile nel seguente film:

Nel 1960 la 611 fu donata al  Virginia Museum of Transportation di Roanoke. Li restò ferma per vent’anni: a inizio anni ’80 fu rimessa in moto per alcuni treni celebrativi, ma nel 1986 fu coinvolta in un incidente (deragliamento di alcune carrozze trainate). La locomotiva non subì danni, ma a causa degli accresciuti costi di assicurazione non tornò più a trainare convolgli, e da allora é ferma al museo.

Disegno della Class J N&W da customtrains.org

Disegno della Class J N&W da customtrains.org

Una carenatura analoga fu applicata tra il 1945 e il 1946 anche a 22 Mountain (4-8-2). 10 erano di classe K2 (n. 116-125) e 12 di classe K2a (n.126-137). Le due serie differivano di poco: alcune informazioni in proposito si trovano sul numero di ottobre 2011 di O-Gauge Railroading. Per la somiglianza con le J le macchine furono soprannominate “J Junior“.

Una K2 N&W carenata. Foto da dieselpunk.org

Una K2 N&W carenata. Foto da dieselpunk.org

N&W K2 n. 129 - da spec.lib.vt.edu

N&W K2 n. 129 – da spec.lib.vt.edu

Tutte queste macchine rimasero in servizio fino al 1958.

N&W ebbe una sorta di carenatura sperimentale anche per due locomotive  sperimentali M2 (Mastodon Class): delle 4-8-0 (n.1100 e 1112).

Una delle due M2 semicarenate - da bodwyn.wordpress.com

Una delle due M2 semicarenate – da bodwyn.wordpress.com

Un approfondimento sulle carenate di N&W si trova su dieselpunks. Moltissime immagini storiche della Norfolk & Western si trovano nella Norfolk and Western Historical Photograph Collection presso VirginiaTech. Altre ancora sono negli archivi della N&W Historical Society, in particolare foto delle Class J, Class K2Class M2.

In scala N

Non sorprenderà che nel modellismo la parte del leone la facciano le macchine di Southern Pacific.

Kato ha prodotto la GS-4  in varie edizioni e versioni:

  • KAT-126-0301 GS-4 Southern Pacific  #4449 (2008 prima produzione)
  • KAT-126-0302 GS-4 Southern Pacific  #4453 (2008, seconda produzione)
  • KAT-126-0303 GS-4Southern Pacific #4431 (2009, terza produzione, livrea nera “wartime”)
  • KAT-126-0304GS-4 Southern Pacific #4453 (2009, terza produzione, livrea nera “wartime”)
  • KAT-126-0305  GS-4 Southern Pacific #4449 (2010, quinta produzione)
  • KAT-126-0306 GS-4 Southern Pacific #4450 (2010, quinta produzione)
  • KAT 126-0307 GS-4 Southern Pacific #4449 (201x, sesta produzione)
  • KAT-126-0311 GS-4 Southern Pacific #4449 (2010, quinta produzione, livrea American Freedom Train)
  • KAT-126-0312 GS-4 BNSF #4449 (201x, sesta produzione, livrea Excursion Black)

La quarta edizione é stata cancellate. Per dettagli si vedano le pagine di KatoUSA, dove sono presenti anche dei filmati che mostrano i modelli in movimento.

La GS4 di Kato

La GS4 di Kato

La GS4 American Freedom Train di Kato

La GS4 American Freedom Train di Kato

La GS4 Nera (Watime) di Kato

La GS4 Nera (Wartime) di Kato

GS4 in livrea nera e stemmi BNSF – Excursion Paint del 2000. Modello Kato

Kato 106-061 era un set di 10 carrozze per il “Daylight” prodotto nel 2010. Vi erano anche dei set da due carrozze ciascuno: 106-6305, 106-6306, 106-6307 e 106-6308, che permettono di comporre il Daylight nella versione a 18 elementi. E’ stato successivamente messo di nuovo in produzione come set 106-062. (si veda sul sito di Kato).

Kato - Kit di 10 carrozze del daylight

Kato – Kit di 10 carrozze del daylight

Kato - Kit di 10 carrozze del daylight

Kato – Kit di 10 carrozze del daylight

Rivarossi produsse una terna di carrozze SP: Una Observation, un Baggage-Dorm, e un Coach. Purtroppo c’erano solo le motrici Diesel per trainarle, e non la bellissima Golden State.

Le tre carrozze Southern Pacific di Rivarossi

Le tre carrozze Southern Pacific di Rivarossi

La coreana Samhongsa aveva prodotto il Daylight (La GS e alcune carrozze) in ottone, importate negli usa da Key Import (si veda brasstrains.com per ulteriori immagini dettagliate)

Convoglio SOUTHERN PACIFIC DAYLIGHT - da www.brasstrains.com

Convoglio SOUTHERN PACIFIC DAYLIGHT di Samhongsa – da http://www.brasstrains.com

Le GS4 importate in USA da Key

Le GS4 importate in USA da Key

Con-Cor ha prodotto la GS-4, ed anche la GS-6, ed almeno le solite carrozze approssimate (non ho fatto una ricerca esaustiva)

La ConCor GS4, nella serie "Red Baron Collector"

La ConCor GS4, nella serie “Red Baron Collector”

Con-Cor GS-6

Con-Cor GS-6

ConCor 001-040376 - Set Southern Pacific Daylight

ConCor 001-040376 – Set Southern Pacific Daylight

Sunset Model Co. (giapponese) ha costruito (molti anni fa) un modello della Class J di N&W. Il modello é in ottone, ovviamente caro e raro.

SUNSET MODEL CO. - NORFOLK & WESTERN 4-8-4 CLASS J da www.brasstrains.com

SUNSET MODEL CO. – NORFOLK & WESTERN 4-8-4 CLASS J
da http://www.brasstrains.com

Bachmann la ha realizzata in due edizioni: nel 1986 e nel 2008. La seconda, oltre ad essere DCC ready, é vastamente superiore, come discusso da spookshow. L’edizione del 2008 c’é in due versioni: base (Art. 82153), con tender supplementare (art. 82154).

Bachmann 82153

Bachmann 82153

Bachmann 82154

Bachmann 82154

ConCor ha realizzato una carenata Norfolk & Western, ma come nei precedenti casi già discussi (tutte le Showel Nose, e l’ipotetica Pennsylvania Brunswick) il modello é sbagliato, qui ancor più grossolanamente:  il rodiggio infatti, invece che un 4-8-4 (per la J) o 4-8-2 (per la K2), é 4-6-4…

Lo sballatissimo modello di una N&W carenata, opera di Con-cor

Lo sballatissimo modello di una N&W carenata, opera di Con-cor

Le carrozze sono le solite di Con-cor, ridipinte con la livrea del caso.

Con-cor 001-040372 Set N&W

Con-cor 001-040372 Set N&W


In questa serie sulle locomotive carenate americane:

Annunci

Read Full Post »

Pubblicato il 20 dicembre 2014

Anche quest’anno siamo arrivati a Natale. Se siete stati bravi, magari Santa Klaus vi farà trovare sotto l’albero qualcosa del genere…

Bachmann White Christmas Express in scala N

Bachmann White Christmas Express in scala N

Si, ho detto “Santa Klaus”: deve proprio essere americano per un trenino così kitch… Babbo Natale vi porterà sicuramente qualcosa di più elegante: i vagoncini natalizi di Minitrix già sarebbero già un pochino meglio…

Ho anche detto “sotto l’albero…” Già. E se invece ci fosse il treno sull’albero Come nel caso del Christmas Tree del 2010 di D.S.Smith:

Albero di natale con treni, di D.S.Smith da cs.trains.com

Albero di natale con treni, di D.S.Smith da cs.trains.com

Ha in basso un treno in scala O, a mezz’altezza un anello in H0 e a tre quarti un anello in N!

Dettaglio dell'albero di D.S.Smith, con gli anelli H0 e N. Foto da cs.trains.com

Dettaglio dell’albero di D.S.Smith, con gli anelli H0 e N. Foto da cs.trains.com

Auguri a tutti! Buon Natale e Felice 2015!

Read Full Post »

Pubblicato il 12 luglio 2014

Spesso nella descrizione dei modelli di rotabili in scala N, si sente dire “circola solo a partire dal raggio R2”, o affermazioni simili., che in realtà hanno poco significato. Infatti in genere si pensa che vi sia un raggio minimo ben definito (R1) e che poi in progressione vi siano raggi di misura via via crescente: R2, R3, R4… Le cose non stanno esattamente in questi termini. L’equivoco  deriva dal fatto che sui cataloghi dei produttori industriali storici si faceva (e si fa tuttora) riferimento per l’appunto a questi raggi, che però non hanno una definizione precisa, e per la verità nemmeno approssimata, se non nello specifico contesto di ciascun produttore che faceva (e fa) di testa sua, talvolta anche con episodi di schizofrenia come quello della Fleischmann attuale. Di conseguenza, non essendoci una definizione “condivisa”,  parlare di R1, R2, e peggio dei raggi maggiori, é quantomeno piuttosto approssimativo e fuorviante.

Insomma,  questi raggi sono “più famosi che conosciuti” per usare le parole del Manzoni.  Ci proponiamo quindi di conoscerli meglio, facendo un po’ di ordine, passando in rassegna e confrontando le scelte fatte dai diversi produttori di binari nella scala che ci interessa.

Iniziamo con un’occhiata al mondo reale. Nell’ambito delle ferrovie con velocità tradizionali  160 km/h), il raggio minimo delle curve planimetriche è dello stesso ordine di grandezza di quello autostradale (1.200 m – si veda Leonardi 2009): in scala N saremmo a 7,5 m di raggio… Nell’alta velocità e nei tratti acclivi questi valori crescono ulteriormente. Per la AV si va dai 2.800 metri delle linee inglesi ai 15.000 metri sul “tratto da record” LGV francesi. Sulle linee AV italiane il raggio minimo è di 5.450 metri, in quelle tedesche è  di 3.350 metri, mentre le linee Shinkansen giapponesi e le AVE spagnole sono calibrate sui 4.000 metri (anche se inizialmente per le tratte giapponesi era previsto un raggio di “soli” 2.500 metri).

Nella realtà anche nel caso di raccordi industriali, il raggio di curvatura delle ferrovie raramente scende sotto i 150 m : in scala N farebbe comunque ben 93,75 cm, ed in H0 1,72 m. Per inciso, nella realtà per favorire la circolazione su raggi così piccoli si allarga lo scartamento di ben 3 cm.

Strettamente legata al raggio di curvatura é la distanza minima tra binari paralleli: nel caso di una curva a doppio binario, il raggio del binario esterno è dato da quello interno più tale distanza. Nelle linee a doppio binario si definisce per l’appunto l’intervia (a volte chiamato interbinario) come la distanza che separa i bordi interni delle rotaie adiacenti, e l’interasse come la distanza tra gli assi dei due binari (per questa e molte delle altre cose riferite ai treni “veri” che diciamo qui, facciamo riferimento a “La sovrastruttura ferroviaria” dell’Università di Pavia, e a “Il tracciato. Appunti del corso di Progettazione di sistemi e infrastrutture di trasporto” dell’Università della Calabria.  Segnaliamo anche un interessante articolo su ostigliatreviso.altervista.org).

Interbinario, dal Manuale del tecnico del binario 4 Parte I , C.I.F.I. 1977

Interbinario, dal Manuale del tecnico del binario 4 Parte I , C.I.F.I. 1977

Al vero l’interasse previsto dalla rete FS in rettifilo per le linee da 160 Km/h era di 3,555 m (in scala N fa 22,2 mm, e in H0 40,8 mm), ma nelle linee Alta Velocità/Alta Capacità in Italia diventa di 5 m (31,25 mm in scala N, 57,4 mm in H0), anche se talvolta viene ridotto a 4,5 m (28,1 mm in scala N, 51,7 mm in H0). L’interasse in curva si allarga progressivamente allo stringersi del raggio: per raggi di circa 400m cresce di 1,5 cm, mentre per raggi stretti (da 150 a 160 m) aumenta di 34 cm.

Nel modellismo in scala N i raggi dei binari ferroviari prodotti industrialmente presentano raggi che variano dal minimo di 192 mm del R1 di Arnold e Fleischmann (pari al vero a 30,7 m). Abbiamo specificato “binari ferroviari” perché in N vi sono prodotti industriali (Tomix e Kato) con raggi minori (fino a 103 mm) che sono però atti solo alla circolazione tranviaria. Quanto al massimo, lo si raggiunge (tra i produttori europei) con R6 di Trix che misura 526,2 mm (84,16 m al vero). Si arriva in realtà anche fino al massimo assoluto dei 765 mm del R7 di Roco (122,4 m al vero), ma si tratta di un binario pensato come compensazione di uno scambio, e non proprio come un binario da usarsi per percorsi in curva.

In H0 il raggio per binari commerciali europei va dal minimo di 358 mm (al vero 31,1 m),  fino al massimo di 604 mm (52,5 m). Questi valori sono tratti (senza ulteriore verifica) da una tabella nella sezione 4 di un buon articolo che tratta vari aspetti del binario in H0 su trenoincasa.

Dunque mentre se riportati al vero i valori dei raggi minimi in N e H0 sono sostanzialmente equivalenti, la scala N si può permettere un raggio massimo “reale” di ben il 60% superiore di quello della sorella maggiore (84 contro 52 metri), il che contribuisce a renderla amata dai “plasticisti”.

Abbiamo visto come, al vero, l’interasse vari con il raggio di curvature. Nel modellismo invece é costante e non cambia con il raggio di curva. Naturalmente stiamo parlando delle geometrie fisse dettate dai binari commerciali preformati: con i binari flessibili ciascuno può fare quel che crede.

L’interasse in N dipende dal costruttore dei binari, e va dal minimo di 30 mm (al vero 4,8 m) di Arnold e Piko al massimo di 37,5 mm di Tomix. La misura minima dunque corrisponde a quella della AV, ed é abbondantemente superiore (del 35%) a quello delle ferrovie ordinarie. I 38,1 mm (1,50″) dell’estremo superiore (Bachmann) sono una vera esagerazione, perché danno ben 6,1 m al vero .

In H0 le cose non sono molto diverse: l’interasse dei binari di Hornby é attualmente di 60 mm (5,2 m), ma può arrivare fino ai 77,5 mm di Trix (6,74 m, perfino oltre quello di Bachmann in N). Ancora una volta, i plastici in N sono più vicini alla realtà di quelli in H0.

Ricordiamo en passant che per la scala N il tema dell’interoperabilità dei binari di costruttori differenti é già stato trattato qui, assieme alla definizione del “codice” della rotaia.

Raggi di curvatura in scala N

Cominciamo dove la scala N é nata mezzo secolo fa, cioè in Germania, ed esaminiamo la produzione delle fabbriche del mondo tedescofono.

Arnold Rapido nei suoi cataloghi dette le prime definizioni dei raggi di curvatura R1…R4:

  • (Arnold) R1 =192 mm (pari al vero a 30,7 m)
  • (Arnold) R2 =222 mm (al vero 35,5 m)
  • (Arnold) R3 =400 mm (al vero 64,0 m)
  • (Arnold) R4 =430 mm (al vero 68,8 m)

In sostanza, un doppio binario a “raggio stretto”, ed uno a “raggio largo”.  In fondo il pregio della scala N é la riduzione degli spazi necessari per i plastici, quindi l’esistenza dei raggi stretti deriva da questo. I modelli di carrozze “lunghe” riprodotte correttamente in scala però sono brutte a vedersi su raggi così stretti, ed ecco quindi per chi può permettersi spazi più agevoli la coppia di binari a “raggio largo”. Il raggio R4 é usato anche per definire la geometria degli scambi, e serve quindi anche come raggio di compensazione per il ramo deviato degli stessi. Le coppie di raggi di Arnold (R1-R2 ed R3-R4) fissano ovviamente l’interasse, che come abbiamo anticipato é di 30 mm. Questo a cascata pone dei vincoli su come debbano essere fatti scambi, incroci, ecc., cioè in sostanza la geometria dei binari. Di geometrie parleremo però in dettaglio un’altra volta: qui ci limitiamo a considerare le curve.

La geometria di Arnold era ricca e razionale, ed é stata praticamente copiata in tutto e per tutto da Fleischmann nei suoi binari con massicciata, con una variazione: un interasse accresciuto. L’interasse di Fleischmann é di 33,6 mm. Fleischmann mantiene le misure di raggio minimo e massimo di Arnold, ma per via dell’interasse cambiato deve modificare i raggi R2 ed R3, aumentando il primo e diminuendo il secondo. Si ha così:

  • (Fleischmann) R1 =192 mm
  • (Fleischmann) R2 =225,6 mm
  • (Fleischmann) R3 =396,4 mm
  • (Fleischmann) R4 =430 mm
La geometria dei Fleischmann Piccolo

La geometria dei Fleischmann Piccolo

Il “competitor” della Germania Est, Piko, realizzò una geometria impoverita rispetto a quella di Arnold, ma mantenne interasse (30 mm) e raggi simili:

  • (Piko) R1 =193 mm
  • (Piko) R2 =223 mm
  • (Piko) R4 =425 mm

La presenza del solo R4 deriva dal fatto che, come già detto, questo é necessario per compensare gli scambi. Non era invece previsto il doppio binario a raggio largo.

Curve Peko

Curve Piko

Trix ha un interasse uguale a quello di Fleischmann (33,6), e valori simili (ma un filino maggiorati) per R1 ed R2. Propone dei raggi R3 ed R4 più piccoli di quelli di Fleischmann, ma poi integra offrendo due ulteriori raggi (R5 ed R6) ampliati. Abbiamo così:

  • (Trix) R1 =194,6 mm
  • (Trix) R2 =228,2 mm
  • (Trix) R3 =329,0 mm
  • (Trix) R4 =362,6 mm
  • (Trix) R5 =492,6 mm
  • (Trix) R6 =526,2 mm
Geometria delle curve Minitrix

Geometria delle curve Minitrix

Roco sembra basarsi sulle scelte di Trix, ma le interpreta in modo originale, riempiendo il gap tra R2 e R3 di Trix ed arrivando poi solo fino al raggio pari a 362,6mm, integrando poi con due ulteriori raggi ampi (R6 ed R7) che servono come compensazione degli scambi:

  • (Roco) R1 =194,6 mm
  • (Roco) R2 =228,2 mm
  • (Roco) R3 =261,8 mm
  • (Roco) R3a =295,4 mm
  • (Roco) R4 = 329 mm
  • (Roco) R5 =362,6 mm
  • (Roco) R6 =480 mm
  • (Roco) R7 =765 mm
Curve Roco

Curve Roco

Si viene quindi ad avere un continuo di 6 raggi tra R1 e R5 nel quale é possibile prendere una qualunque coppia adiacente per realizzare un doppio binario in curva con interasse di 33,6 mm. Curiosamente, la denominazione dei raggi non presenta una progressione aritmetica, per la presenza di un raggio chiamato R3a: presumiamo si tratti di un raggio aggiunto in un secondo tempo, quando gli altri nomi erano ormai stabiliti.

Da quando Roco ha cessato la commercializzazione in scala N con il suo nome, la sua linea di binari é stata rilevata da Fleischmann, che ora ha una doppia offerta: i suoi binari originali (con massicciata), e gli ex-Roco (senza massicciata).

Da questo primo excursus sui binari dei produttori tedeschi ed italiani si vede come R5 di Roco corrisponda a R6 di Trix, e sia minore di R3 di Arnold e di Fleischmann! La cosa paradossale é che Fleischmann ha a catalogo binari che chiama “R3” ma che corrispondono a due raggi molto diversi: con massicciata 396,4 mm, e senza massicciata (ex Roco) 261,8 mm! Idem per gli R4. Ecco perché dicevamo che parlare di curve in termini di Rx é una scorciatoia che non costituisce una buona pratica…

La spagnola Ibertren riprende le scelte di Roco e offre lo stesso assortimento – escluso i due raggi più ampi. Cambiano però i nomi: invece che avere l’anomalo R3a, usa nomi da R1 a R6 (si veda spurweite-n.de).

  • (Ibertren) R1 =194,6 mm
  • (Ibertren) R2 =228,2 mm
  • (Ibertren) R3 =261,8 mm
  • (Ibertren) R4 =295,4 mm
  • (Ibertren) R5 = 329 mm
  • (Ibertren) R6 =362,6 mm

Veniamo finalmente in Italia. Come Piko, anche Lima e Rivarossi presentavano geometrie semplificate rispetto alla “baseline” Arnold Rapido.

Originariamente Lima offriva il solo raggio R1 di 192 mm, corrispondente all’Arnold, e lo usava inizialmente anche per i suoi (orribili) scambi.

Curva e scambio Lima, dal catalogo del 1966/67

Curva e scambio Lima, dal catalogo del 1966/67

Successivamente, attorno a metà degli anni ’70, come documentato dai cataloghi d’epoca, abolì il raggio stretto e si presentò con la seguente scelta:

  • (Lima da metà anni ’70) R1 =203 mm
  • (Lima da metà anni ’70) R2 =236 mm
  • (Lima da metà anni ’70) R4 =481 mm

Anche gli scambi divennero più simili a quelli dei concorrenti. L’interasse era di 33 mm.

Geometria  Lima dagli anni '70

Geometria Lima dagli anni ’70

Rivarossi aveva a catalogo solo vetture lunghe, alle quali i raggi stretti non si addicevano, e quindi esordì con una scelta ibrida, a metà strada tra i raggi stretti e larghi di Arnold. Curiosamente a catalogo li chiamava R1, R2 ed R5. Forse pensava di introdurre successivamente R3 ed 34, cosa che non avvenne mai. L’interasse era uguale a quello Lima: 33 mm.

  • (Rivarossi) R1 =249 mm
  • (Rivarossi) R2 =282 mm
  • (Rivarossi) R5 =481 mm
Le curve Rivarossi

Le curve Rivarossi

Passiamo Oltremanica, e ci toccherà di iniziare a ragionare anche in inches (pollici).

Peco offre binari in codice 55 (Cos’é il codice? guarda qui). Produce curve preformate di quattro raggi, con interasse di 34,9 mm (1 3/8″).

  • (Peco) R1 =228,6 mm (9″)
  • (Peco) R2 =263,5 mm (10 3/8″)
  • (Peco) R3= 298,5 (11 3/4″)
  • (Peco) R4 = 333,4 (13 1/8″)

La divisione UK di Bachmann presenta una scelta simile, con uguali interasse , ma é limitata ad R1 ed R2.

  • (Bachmann-UK) R1 =228,6 mm (9″)
  • (Bachmann-UK) R2 =263,5 mm (10 3/8″)

La casa madre americana (Bachmann-USA) nella serie E-Z Track ha un’offerta differente, che inizia con un raggio minimo che non si discosta molto dal R3a di Roco: si vede che i modellisti americani hanno spazi più grandi a loro disposizione! Nel presentare le rotaie dei “gringos”, e poi quelle dei “giap”, effettueremo una scelta arbitraria, introducendo una denominazione RnU (nelle nostre intenzioni la “U” sta per Unificato) dove accorperemo raggi simili anche se non uguali, per facilitare un confronto intuitivo tra le gamme. Al termine riprenderemo questa notazione unificata, applicandola anche ai produttori europei che abbiamo già visto per poter fare un confronto globale.

Ma torniamo a Bachmann- USA, che con i suoi E-Z Track effettua una scelta un po’ strana, adottando un interasse di 1,25″ (31,75 mm)  per la coppia più stretta (quella che noi chiameremo R4U e R5U), mentre l’interasse cresce a ben 38,1 mm (1,50″) per la sequenza successiva (R5U- R6U, R6U-R7U e R9U-R10U).

  • (Bachmann-USA) R4U =285,7 mm (11,25″)
  • (Bachmann-USA) R5U =317,5 mm (12,50″)
  • (Bachmann-USA) R6U =355,6 mm (14,00″)
  • (Bachmann-USA) R7U =393,7 mm (15,50″)
  • (Bachmann-USA) R9U = 444,5 mm (17,50″)
  • (Bachmann-USA) R10U =482,6 mm (19,00″)

L’altro grande protagonista USA, Atlas, ha una tripla offerta: codice 55, 65 e codice 80. Per le rotaie col profilo standard, quello più alto (cod. 80), presenta scelte simili a quelle di Rivarossi, con la quale aveva una partnership, con interasse leggermente differente (31,75  mm, 1,25″ per Atlas, 33 mm per la casa comasca)):

  • (Atlas cod.80) R3U =247,6 mm (9,75″)
  • (Atlas cod.80) R4U =279,4 mm (11,00″)
  • (Atlas cod.80) R10U =482,6 mm (19,00″)

In codice 65 (N-True Track, con massicciata) presenta quattro raggi con interasse di 1,5″ (38,1 mm)

  • (Atlas cod.65) R4U =279,4 mm (11,00″)
  • (Atlas cod.65) R5U =317,5 mm (12,5″)
  • (Atlas cod.65) R6U =355,6 mm (14,00″)
  • (Atlas cod.65) R7U =393,7 mm (15,50″)

In codice 55 presenta interasse di 1,25″ (31,75 mm) e valori non troppo dissimili dai Bachmann, con una scala più ricca e completa

  • (Atlas cod.55) R3U =254 mm (10,00″)
  • (Atlas cod.55) R4U =285,7  mm (11,25″)
  • (Atlas cod.55) R5U =317,5 mm (12,5″)
  • (Atlas cod.55) R6U =349,5 mm (13,75″)
  • (Atlas cod.55) R7U =381 mm (15,00″)
  • (Atlas cod.55) R8U = 412.8 mm (16,25″)
  • (Atlas cod.55) R9U =444,5  mm (17,50″)
  • (Atlas cod.55) R10U =476,3 mm (18,75″)
  • (Atlas cod.55) R11U =508 mm (20,00″)
  • Atlas cod.55) R12U =539,8 mm (21,25″)
Il più ricco assortimento di binari curvi: Atlas Code 55, ben 10 diversi raggi.

Il più ricco assortimento di binari curvi: Atlas Code 55, ben 10 diversi raggi.

Atlas consente dunque la realizzazione di fasci consistenti di ben 10 binari paralleli concentrici ed equispaziati!

Abbiamo infine i produttori giapponesi.

Kato presenta un interasse nella media (33 mm) ed offre nella serie UNITRACK i seguenti raggi:

  • (Kato) R2U =216 mm
  • (Kato) R3U =249 mm
  • (Kato) R4U =282 mm
  • (Kato) R5U = 315 mm
  • (Kato) R6U =348 mm
  • (Kato) R7U =381 mm
  • (Kato) R10U=481 mm
  • (Kato) RXLarge=718 mm

Anche qui a dicitura R2U…RXLarge non é di Kato, l’abbiamo usata noi a titolo indicativo. R10U e RXLarge sono previste come curve di compensazione scambi.

Curve Kato

Curve Kato UNITRACK

L’altro produttore giapponese, Tomix, ha il seguente assortimento:

  • (Tomix) R3U =243 mm
  • (Tomix) R4U =280 mm
  • (Tomix) R5U = 317 mm
  • (Tomix) R6U =354 mm
  • (Tomix) R7U =391 mm
  • (Tomix) R8U= 541 mm
  • (Tomix) RXLARGE= 605 mm

L’interasse é piuttosto abbondante: 37 mm. Di nuovo, la notazione R3U…RXLarge é nostra ed é puramente indicativa. I giapponesi presentano anche raggi ridotti ad uso tranviario. Tomix ha binari di tre raggi, che identifichiamo con la notazione RT1…3, dove la T sta per “tranviario”:

  • (Tomix) RT1 =103 mm
  • (Tomix) RT2 =140 mm
  • (Tomix) RT3 = 177 mm
I Tram Tomix con il loro stretto raggio (immagine da sunny-life.net)

I Tram Tomix con il loro stretto raggio (immagine da sunny-life.net)

Kato offre invece nella serie UNITRAM dei binari accoppiati in doppio binario, con raggio del binario interno pari a 180 mm (RT3) ed interasse variabile (25 mm su un lato, 33 mm sull’altro).

Curva Kato Unitram

Curva Kato UNITRAM

Tabella riassuntiva

Passiamo ora a compilare una tabella complessiva, nella quale estendiamo le nostre categorie a tutto i binari prodotti. I vari RT e RU non vanno considerati come raggi precisi, ma piuttosto come famiglie di raggi simili compresi all’interno di certe fasce. I valori minimo e massimo riscontrati nelle fasce sono riportati in seconda colonna.

  raggio min-max Marca e raggio
RT1 103-103

Tomix 103

RT2 140-140

Tomix 140

RT3 177-180

Tomix 177; Kato UNITRAM 180

R1U 192-203

Arnold R1, Lima anni 60 e Fleischmann R1=192; Piko R1=193; Trix R1, Roco R1, Ibertren R1=194,6; Lima R1=203;

R2U 216-236

Kato 216; Arnold R2=222; Piko R2=223; Fleischmann R2=225,6; Trix R2, Roco R2, Ibertren R2=228,2: Peco R1 e Bachmann-UK R1=228,6; Lima R2=236;

R3U 243-264

Tomix 243; Atlas C80 247,6; Kato e Rivarossi R1=249; Atlas C55 254; Roco R3 e Ibertren R3=261,8; Peco R2 e Bachmann UK R2=263,5;

R4U 279-298

Atlas C65 e Atlas C80 279,4; Tomix 280; Kato e Rivarossi R2=282; Atlas C55 e Bachmann USA 285,7; Roco R3a e Ibertren R4=295,4; Peco R3=298,5

R5U 315-334

Kato 315; Tomix 317; Bachmann USA, Atlas C65, Atlas C55 317,5; Trix R3, Roco R4 e Ibertren R5=329; Peco R4=333,4

R6U 348-363

Kato 348; Atlas C55 349,5; Tomix 354, Bachmann USA, Atlas C65 355,6 ;Trix R4, Roco R5 e Ibertren R6=362,6;

R7U 381-400

Kato e Atlas C55 381; Tomix 391; Bachmann USA, Atlas C65 393,7; Fleischmann R3=396,4; Arnold R3=400;

R8U 412-430

Atlas C55 412,8; Piko R4=425; Fleischmann R4 e Arnold R4=430;

R9U 444-445

Atlas C55 e Bachmann USA 444,5;

R10U 476-493

Atlas C55 476,3; Roco R6=480; Kato, Lima e Rivarossi R5=481; Atlas C80 e Bachmann USA 482,6, Trix R5=492,6;

R11U 508-526

Atlas C55 508; Trix R6=526,2

R12U 538-541

Atlas C55 539,8; Tomix 541

RXLarge >600

Tomix 605; Kato 718; Roco R7=765

Potremmo sintetizzare notando che i raggi per i quali vi sono più prodotti disponibili sono R2U e R4U, entrambi con ben 10 scelte possibili.

Potremmo anche dire che R1U e R2U sono raggi pensati principalmente per la versione “giocattolo” e per plastici particolarmente ridotti, e che la versione “modellistica” inizia a partire dal raggio R3U: é infatti da qui che parte la scala più ricca, la Atlas in codice 55 che, tra le tre gamme offerte dal produttore statunitense, é considerata la versione “professionale” del binario in N.

Osserviamo infine che confronti operati con la notazione qui proposta risultano immediatamente più intuitivi: ad esempio dire che i due raggi stretti di Arnold sono R1U e R2U mentre i due raggi larghi sono R7U e R8U  esprime assai meglio i rapporti relativi piuttosto che la dicitura commerciale del produttore “R1-R2” e “R3-R4”.

Curve paraboliche

Prima di chiudere, menzioniamo un’altro aspetto riguardante la geometria delle curve. Per semplicità, tutti i costruttori producono elementi che sono degli archi di cerchio, in vari possibili angoli (con particolare presenza di elementi curvi di 15°). Nelle ferrovie reali invece le curve non sono riconducibili solo a degli archi di cerchio di raggio fisso. Nell’ingegneria ferroviaria si evita il brusco passaggio da una curvatura nulla (rettifilo, matematicamente equivalente a un curva con raggio infinito) ad una curvatura data (arco di cerchio con raggio assegnato). Questo infatti comporterebbe una variazione istantanea dell’accelerazione centripeta, dannosa per i cerchioni a contatto con le rotaie, per le rotaie stesse e per il comfort dei passeggeri nei vagoni. Si interpone dunque tra il rettifilo e la curva vera e propria una sezione intermedia (una clotoide o un raccordo parabolico) nella quale il raggio di curvatura cambia con una progressione continua fino a raggiungere quello del “cuore” della curva. 

il tratto rosso mostra il raccordo parabolico che unisce il rettifilo blu con la curva circolare verde.

Il tratto rosso mostra il raccordo parabolico che unisce il rettifilo blu con la curva circolare verde.

Nel modellismo curve di questo tipo possono essere realizzate con binari flessibili. E’ possibile simularle approssimativamente usando curve di diverso raggio, come mostrato nella seguente immagine composta utilizzando la geometria dei binari Fleischmann.

Curva a raggio fisso (in alto) e curva pseudo-parabolica (in basso), ottenuta inteponendo a inizio curva due elementi di raggio maggiore (evidenziati in rosso).

Curva a raggio fisso (in alto) e curva pseudo-parabolica (in basso), ottenuta interponendo a inizio curva due elementi di raggio maggiore (evidenziati in rosso).

 

Read Full Post »